Genetic Vaccines and Therapy
نویسندگان
چکیده
Background: Liver fluke can infect cattle and sheep, and is also emerging as a human pathogen in developing countries. Cathepsin B (Cat B2) is a major cysteine protease secreted by the juvenile flukes. To enhance the immune responses of Cat B2, the cDNA sequence was fused with four different DNA vaccine vectors. The induced cellular and antibody responses were compared in vaccinated mice. Methods: The following recombinant DNA vaccine constructs were constructed: empty vector VR1012 as negative control, cytoplasmic construct pVR1012 Cat B2, secretory construct pVR1020 Cat B2, chemokine-fused construct pMCP3 Cat B2 and lymph node targeting construct pCTLA-4 Cat B2. Plasmids were constructed using standard procedures, and positive constructs screened and selected using restriction digestion analysis followed by sequence analysis. The constructs were then tested in Cos-7 cells for in vitro expression, which was analysed using immunoblotting. Subsequently, female BALB/c mice were immunised with DNA constructs as vaccines. Elicited antibody responses were measured using ELISA. The ratio between IgG1 and IgG2a antibody responses was estimated among different vaccine groups. IgG antibody avidity assay was performed and the relative avidity index was calculated. The induced cytokine production from splenocytes of vaccinated animals was estimated using ELISPOT. Results: DNA vaccine constructs carrying Cat B2 were expressed in Cos-7 cell lines and encoded protein was recognised using western blotting using rat anticathepsin B antibody. DNA vaccines elicited high Cat B2specific IgG, IgG1, IgE and also modest IgG2a antibody responses. Cat B2 specific IL-4 T cell responses were also observed in Cat B2 vaccinated mice. The comparison of immunogenic potential in each of these constructs was demonstrated as enhanced antibody responses on the lymph-node targeting vector pCTLA-4 Cat B2, the high antibody avidity of chemo-attractant pMCP3 Cat B2 and stronger T cellular responses of non-secretory DNA vaccine pVR1012 Cat B2 in vaccinated animals. Conclusion: This study showed that the targeting DNA vaccine strategies enhanced specific immune responses to juvenile fluke Cat B2. The results of our current study have demonstrated that a gene-based vaccine as an immunotherapeutic approach to combat Fasciola infection may be feasible.
منابع مشابه
DNA vaccines: designing strategies against parasitic infections
The complexity of parasitic infections requires novel approaches to vaccine design. The versatility of DNA vaccination provides new perspectives. This review discusses the use of prime-boost immunizations, genetic adjuvants, multivalent vaccines and codon optimization for optimal DNA vaccine design against parasites.
متن کاملGenetic therapy: on the brink of a new future
xxx The field of genetic therapeutics, the focus of our new journal, Genetic Vaccines and Therapy, is poised to enter a potentially vast new arena of medical progress within this decade. Worldwide interest exists among biopharmaceutical companies, governments, the military and medical practitioners in the rapid development and deployment of novel DNA-based agents. The possibilities are virtuall...
متن کاملApplication of bacterial shuttle vectors in designing new vaccines against infectious diseases: brief report
Background: Today, several vaccines have been developed to prevent infectious diseases. The older first-generation vaccines may have many problems. In this regard, genetic engineering plays an important role using tools such as shuttle vectors to develop recombinant DNA vaccines that usually include plasmid constructed so that can propagate in two different host species. The present study revie...
متن کاملWhole Tumor Cell Vaccine Adjuvants: Comparing IL-12 to IL-2 and IL-15
Cancer immunotherapy (passive or active) involves treatments which promote the ability of the immune system to fight tumor cells. Several types of immunotherapeutic agents, such as monoclonal antibodies, immune checkpoint inhibitors, non-specific immunomodulatory agents, and cancer vaccines are currently under intensive investigation in preclinical and clinical trials. Cancer vaccines induce pe...
متن کاملHepatitis C Virus and Vaccine Development
The prevalence of Hepatitis C virus (HCV) is approximately 3% around the world. This virus causes chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. The effectiveness of interferon-α and ribavirin therapy is about 50% and is associated with significant toxicity and cost. Hence, generating new vaccines or drugs is an obligation. However, there is no vaccine available for clinical u...
متن کاملBiotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.
Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, ...
متن کامل